首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3434篇
  免费   435篇
  国内免费   238篇
化学   2308篇
晶体学   12篇
力学   158篇
综合类   22篇
数学   501篇
物理学   1106篇
  2024年   4篇
  2023年   59篇
  2022年   45篇
  2021年   72篇
  2020年   96篇
  2019年   89篇
  2018年   73篇
  2017年   57篇
  2016年   133篇
  2015年   110篇
  2014年   155篇
  2013年   240篇
  2012年   311篇
  2011年   305篇
  2010年   218篇
  2009年   178篇
  2008年   245篇
  2007年   192篇
  2006年   183篇
  2005年   169篇
  2004年   143篇
  2003年   149篇
  2002年   117篇
  2001年   86篇
  2000年   70篇
  1999年   58篇
  1998年   44篇
  1997年   51篇
  1996年   57篇
  1995年   47篇
  1994年   38篇
  1993年   35篇
  1992年   25篇
  1991年   19篇
  1990年   25篇
  1989年   16篇
  1988年   15篇
  1987年   14篇
  1986年   14篇
  1985年   18篇
  1984年   22篇
  1983年   13篇
  1982年   13篇
  1981年   8篇
  1980年   14篇
  1979年   14篇
  1978年   7篇
  1976年   8篇
  1975年   5篇
  1974年   5篇
排序方式: 共有4107条查询结果,搜索用时 18 毫秒
91.
In searching for novel insecticidal leads, a series of N-pyridylpyrazolo-5-methyl amines and their derivatives were designed and synthesized. Among the 22 target compounds obtained, bioassays indicated that some of the target compounds exhibited good insecticidal activities against Plutella xylostella (P. xylostella) and Spodoptera frugiperda (S. frugiperda). In particular, compound 9j revealed the best insecticidal activity against P. xylostella, with a LC50 value of 22.11 mg/L, and compound 9q had the best insecticidal activity against S. frugiperda which with 73.99% of mortality rate at 100 mg/L. Structure-activity relationship (SAR) analysis showed that 4-CF3 at the position of R1 linked with N-pyridylpyrazole via amide bond could enhance the insecticidal activity of the target compounds. This study provides valuable clues for the further design and optimization of N-pyridylpyrazole derivatives.  相似文献   
92.
Demands for large-scale energy storage systems have driven the development of layered transition-metal oxide cathodes for room-temperature rechargeable sodium ion batteries (SIBs). Now, an abnormal layered-tunnel heterostructure Na0.44Co0.1Mn0.9O2 cathode material induced by chemical element substitution is reported. By virtue of beneficial synergistic effects, this layered-tunnel electrode shows outstanding electrochemical performance in sodium half-cell system and excellent compatibility with hard carbon anode in sodium full-cell system. The underlying formation process, charge compensation mechanism, phase transition, and sodium-ion storage electrochemistry are clearly articulated and confirmed through combined analyses of in situ high-energy X-ray diffraction and ex situ X-ray absorption spectroscopy as well as operando X-ray diffraction. This crystal structure engineering regulation strategy offers a future outlook into advanced cathode materials for SIBs.  相似文献   
93.
An efficient synthetic method for bis(indol-3-yl)alkane derivatives has been developed.In the presence of 5 mol%of pyridinium tribromide(PTB),the condensation of indoles and aldehydes proceeded smoothly under mild conditions,giving rise to the corresponding bis(indol-3-yl)alkanes in good to excellent yields.  相似文献   
94.
Applying interlayers is the main strategy to address the large area specific resistance (ASR) of Li/garnet interface. However, studies on eliminating the Li2CO3 and LiOH interfacial lithiophobic contaminants are still insufficient. Here, thermal-decomposition vapor deposition (TVD) of a carbon modification layer on Li6.75La3Zr1.75Ta0.25O12 (LLZTO) provides a contaminant-free surface. Owing to the protection of the carbon layer, the air stability of LLZTO is also improved. Moreover, owing to the amorphous structure of the low graphitized carbon (LGC), instant lithiation is achieved, and the ASR of the Li/LLZTO interface is reduced to 9 Ω cm2. Lithium volatilization and Zr4+ reduction are also controllable during TVD. Compared with its high graphitized carbon counterpart (HGC), the LGC-modified Li/LLZTO interface displays a higher critical current density of 1.2 mA cm−2, as well as moderate Li plating and stripping, which provides enhanced polarization voltage stability.  相似文献   
95.
Secondary ion mass spectrometry (SIMS) has a wide range of applications in Earth Science research, thanks to its high precision and sensitivity, and its capacity in direct insitu micromeasurement. The technique is operated in ultra-high vacuum (UHV) conditions, especially for the measurement of volatiles such as hydrogen, or the water content in nominally anhydrous minerals (NAMs). To minimize the water background and obtain accurate and precise water contents in NAMs (eg, olivine) critical parameters such as presputtering time, field aperture (FA), dynamic transfer on/off, and primary beam current intensity were investigated for a CAMECA IMS 1280-HR system. When the chamber vacuum reaches approximately 2 × 10−9 mbar, we set the DTOS OFF, raster size to 50 μm and primary beam current to 5 nA, and used 2000 μm FA and 170-second presputtering time. Consequently, an approximately 1.2 ppmw water background and 3.6 ppmw limit of detection (LOD) were yielded, from analyzing the San Carlos olivine. Meanwhile, the water content and homogeneity of a range of olivine minerals were characterized for potential use as reference materials for SIMS water content measurement. Olivine water content calibration curve was also established by comparing the Fourier transform infrared (FTIR) results with the SIMS-measured 16O1H/16O ratios. Accuracy and precision of water content measurement were estimated to be better than approximately 10% in this study.  相似文献   
96.
We report the synthesis of a new class of thermally stable and strongly luminescent cyclometalated iridium(III) complexes 1 – 6 , which contain the 2‐acetylbenzo[b]thiophene‐3‐olate (bt) ligand, and their application in organic light‐emitting diodes (OLEDs). These heteroleptic iridium(III) complexes with bt as the ancillary ligand have a decomposition temperature that is 10–20 % higher and lower emission self‐quenching constants than those of their corresponding complexes with acetylacetonate (acac). The luminescent color of these iridium(III) complexes could be fine‐tuned from orange (e.g., 2‐phenyl‐6‐(trifluoromethyl)benzo[d]thiazole (cf3bta) for 4 ) to pure red (e.g., lpt (Hlpt=4‐methyl‐2‐(thiophen‐2‐yl)quinolone) for 6 ) by varying the cyclometalating ligands (C‐deprotonated C^N). In particular, highly efficient OLEDs based on 6 as dopant (emitter) and 1,3‐bis(carbazol‐9‐yl)benzene (mCP) as host that exhibit stable red emission over a wide range of brightness with CIE chromaticity coordinates of (0.67, 0.33) well matched to the National Television System Committee (NTSC) standard have been fabricated along with an external quantum efficiency (EQE) and current efficiency of 9 % and 10 cd A?1, respectively. A further 50 % increase in EQE (>13 %) by replacing mCP with bis[4‐(6H‐indolo[2,3‐b]quinoxalin‐6‐yl)phenyl]diphenylsilane (BIQS) as host for 6 in the red OLED is demonstrated. The performance of OLEDs fabricated with 6 (i.e., [(lpt)2Ir(bt)]) was comparable to that of the analogous iridium(III) complex that bore acac (i.e., [(lpt)2Ir(acac)]; 6 a in this work) [Adv. Mater.­ 2011 , 23, 2981] fabricated under similar conditions. By using ntt (Hnnt=3‐hydroxynaphtho[2,3‐b]thiophen‐2‐yl)(thiophen‐2‐yl)methanone) ligand, a substituted derivative of bt, the [(cf3bta)2Ir(ntt)] was prepared and found to display deep red emission at around 700 nm with a quantum yield of 12 % in mCP thin film.  相似文献   
97.
We demonstrate that surface‐induced dissociation (SID) coupled with ion mobility mass spectrometry (IM‐MS) is a powerful tool for determining the stoichiometry of a multi‐subunit ribonucleoprotein (RNP) complex assembled in a solution containing Mg2+. We investigated Pyrococcus furiosus (Pfu) RNase P, an archaeal RNP that catalyzes tRNA 5′ maturation. Previous step‐wise, Mg2+‐dependent reconstitutions of Pfu RNase P with its catalytic RNA subunit and two interacting protein cofactor pairs (RPP21?RPP29 and POP5?RPP30) revealed functional RNP intermediates en route to the RNase P enzyme, but provided no information on subunit stoichiometry. Our native MS studies with the proteins showed RPP21?RPP29 and (POP5?RPP30)2 complexes, but indicated a 1:1 composition for all subunits when either one or both protein complexes bind the cognate RNA. These results highlight the utility of SID and IM‐MS in resolving conformational heterogeneity and yielding insights on RNP assembly.  相似文献   
98.
Real‐time imaging of cell‐surface‐associated proteolytic enzymes is critical to better understand their performances in both physiological and pathological processes. However, most current approaches are limited by their complexity and poor membrane‐anchoring properties. Herein, we have designed and synthesized a unique small‐molecule fluorescent probe, which combines the principles of passive exogenous membrane insertion and Förster resonance energy transfer (FRET) to image cell‐surface‐localized furin‐like convertase activities. The membrane‐associated furin‐like enzymatic cleavage of the peptide probe leads to an increased fluorescence intensity which was mainly localized on the plasma membrane of the furin‐expressed cells. This small‐molecule fluorescent probe may serve as a unique and reliable reporter for real‐time visualization of endogenous cell‐surfaceassociated proteolytic furin‐like enzyme functions in live cells and tissues using one‐photon and two‐photon microscopy.  相似文献   
99.
The single crystal structure of 1,1′‐bis (3,5‐dimethyl‐pyrazole) methenehydrazine (BDM) was determined by X‐ray single crystal diffraction for the first time. The obtained experimental results indicated that BDM was the intermediate of 3,6‐bis(3,5‐dimethylpyrazol‐1‐yl)‐1,4‐dihydro‐1,2,4,5‐tetrazine (BDT), which was the key precursor of s‐tetrazine. By this evidence, the preparation mechanism of BDT was proved: At 318.15 K, triaminoguanidine and pentanedione reacted to achieve the intermediate (BDM) by molecular nucleophilic addition and intramolecular nucleophilic substitution; when heated to 363.15 K, BDT was then generated by two molecules of BDM with nucleophilic substitution reaction. Furthermore, the thermal decomposition properties and also the non‐isothermal kinetic parameters have been investigated in the present work.  相似文献   
100.
Here we report the characterization of an electrochemical mercury (Hg2+) sensor constructed with a methylene blue (MB)-modified and thymine-containing linear DNA probe. Similar to the linear probe electrochemical DNA sensor, the resultant sensor behaved as a “signal-off” sensor in alternating current voltammetry and cyclic voltammetry. However, depending on the applied frequency or pulse width, the sensor can behave as either a “signal-off” or “signal-on” sensor in square wave voltammetry (SWV) and differential pulse voltammetry (DPV). In SWV, the sensor showed “signal-on” behavior at low frequencies and “signal-off” behavior at high frequencies. In DPV, the sensor showed “signal-off” behavior at short pulse widths and “signal-on” behavior at long pulse widths. Independent of the sensor interrogation technique, the limit of detection was found to be 10 nM, with a linear dynamic range between 10 nM and 500 nM. In addition, the sensor responded to Hg2+ rather rapidly; majority of the signal change occurred in <20 min. Overall, the sensor retains all the characteristics of this class of sensors; it is reagentless, reusable, sensitive, specific and selective. This study also highlights the feasibility of using a MB-modified probe for real-time sensing of Hg2+, which has not been previously reported. More importantly, the observed “switching” behavior in SWV and DPV is potentially generalizable and should be applicable to most sensors in this class of dynamics-based electrochemical biosensors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号